
Optimizing For Off-Road Navigation
Antoine Bergerault

Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213
abergera@andrew.cmu.edu

Mukhtar Maulimov
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

mmaulimo@andrew.cmu.edu

Eric Youn
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213

eyoun@andrew.cmu.edu

Abstract—This document is summarizing our project on off-
road car navigation from cost maps of real-world data. Based on
data collected by the AirLab at Carnegie Mellon University, we
were able to design a trajectory planner using RRT# and deter-
mine optimal controls to follow this trajectory. We experiment
with iLQR and MPPI to track the reference trajectory using
simple bicycle model dynamics.

Index Terms—off-road navigation, trajectory optimization,
RRT, iLQR, MPPI

I. INTRODUCTION

Autonomous off-road driving on complex terrain is a chal-
lenging task. In this project, we were interested in the tra-
jectory optimization of a vehicle in an environment derived
from real-world data. To describe the vehicle we used bicyle
model dynamics, and the data we used for the maps has been
collected with a Yamaha vehicle at Gascola, PA by AirLab
researchers. This laboratory researchers have generated all
maps using various sensors such as cameras, IMU, and Lidar.
Once the observations and cost maps are generated, we can
derive a near-optimal trajectory by the means of a sample-
based planner. In order to track the trajectory in this complex
environment, we wanted to compare a sampling-based method
called Model Predictive Path Integral (MPPI) to the classic
iLQR-LQR pair.

II. PROBLEM DESCRIPTION

In this project, an off-road driving Yamaha vehicle has
been used as the main data collection platform. The vehicle
is equipped with multiple sensors such as Velodyne HDL-
64E Lidar, multisense camera, and Novatel IMU. A simple
illustration of the vehicle is shown in Figure 1.

Fig. 1. Yamaha vehicle at Gascola, PA test site.

The data has been collected at the Gascola, PA test side
outside of Pittsburgh, PA by AirLab researchers. During the
data collection, the vehicle has been driven with teleop. The
illustration of the environment during the data collection can
be observed in Figure 1.

The raw data, specifically Lidar points and IMU data, has
been post-processed to generate registered point cloud along
with an accurate localization. As a SLAM solution, a state-of-
the-art work by [3] has been used.

As a next step, a perception mapping module developed for
an off-road driving by the AirLab researchers have been used
to build a map. The registered point clouds and the localization
states have been used as an input to the perception module to
generate map features. In this project, only 3 map features
have been used: terrain map, observed map, and object height
map.

The perception mapping module is based on 3D voxels.
It is 2D grid cells along x-y with configurable number of
voxels along the z axis of each cell. In order to populate
the 3D voxel mapping, a consecutive registered point cloud
is inserted to a corresponding voxel and it updates number of
hits, number of pass through, and density of the voxel. When
there is a point registered as a hit in a cell, it is marked as
an observed (known) cell. Points with no hits will stay as no
data. Based on recursive mean neighbor averaging, a certain
number of no data (unknown) cells right next to the observed
(known) cells are estimated and marked as inferred cells. The
observed map is then estimated using these three kinds of
cells (observed, inferred, and no data). Next, using the lowest
valid voxel elevation data in each grid cell, the terrain map is
estimated. The terrain (elevation) map is generated based on
Markov Random Field (MRF). Finally, using the highest valid
hit voxel elevation data in each grid cell and the terrain map,
the object height map is calculated as the difference between
the two.

Figures 2, 3, and 4 show the maps used in this project. The
map size is 200m x 200m robot-centered with 0.5m of grid
size resolution.

a) The object map: It is shown in Figure 2. The object
map shows where the lethal obstacles are in the map, and is
used to navigate away from them.

b) The observed map: It is shown in Figure 3. The
observed map shows where the occluded and not-occluded
regions are in the map.



Fig. 2. Object height map. Dark is low, bright is high.

Fig. 3. Observed map. Purple is no data, yellow is inferred, blue is observed.

c) The terrain map: It is shown in Figure 4. The terrain
map shows elevation of the terrain. It can be used to calculate
slope of the terrain and is important for the vehicle roll-over
considerations.

We describe our car with the very classical bicycle model
with wheelbase w, whose state and controls are given as
follows:

x =


px
py
θ
v

 , u =

(
a
α

)
(1)

Where p ∈ R2 denotes the position of the car, θ ∈ R
its yaw angle, v ∈ R its velocity (magnitude), a ∈ R its
acceleration (magnitude) and α ∈ R its steering angle.

In this configuration, the dynamics are then the following:

ẋ = f(x, u) =


v cos θ
v sin θ
v tanα

w
a

 (2)

Fig. 4. Terrain/elevation map.

Whose jacobians are:

∂f(x, u)

∂x
=


0 0 −v sin θ cos θ
0 0 v cos θ sin θ
0 0 0 tanα

w
0 0 0 0

 (3)

∂f(x, u)

∂u
=


0 0
0 0
0 v

w cos2 α
1 0

 (4)

We form the discrete dynamics by using a midpoint inte-
gration, which, if we denote xm

.
= x + f(x, u)∆t

2 is defined
as follows:

M(f, x, u)
.
= x+ f (xm, u)∆t (5)

We also derive explicitly the Jacobians with respect to x
and u respectively:

dM(f, x, u)

dx
= In+∆t

∂f (xm, u)

∂x

(
In +

∆t

2

∂f (x,u)

∂x

)
(6)

dM(f, x, u)

du
=

∆t

(
∆t

2

∂f (xm, u)

∂x

∂f(x, u)

∂u
+

∂f(xm, u)

∂u
In

)
(7)

III. RRT PLANNING

In this project, we used RRT# to generate the sub-optimal
trajectory between start and goal states. Implementation details
can be found in [1]. RRT# is a tree based planning algorithm
used to approximate value function at its nodes where we
expanded the tree backwards starting from the goal point. In
our implementation, dynamic feasibility has not been taken



into account. Instead, each node is expanded along a straight
line. Dynamic feasibility is planned to be added as a future
work as an extension.

The observed map shown in Figure 3 and the object height
map shown in Figure 2 are used as an input to the RRT#
algorithm to calculate the approximate value function. The cost
function calculation details between two nodes is as follows:

cost = segmentLength

for each grid cell along segment:
cellCost = exp(objectHeightSquare)

if cell is inferred:
cellCost += 1.0

cost += cellCost

The cost includes length of the segment between the nodes.
Additionally, it will be penalized based on the object height
as exponential of square of the object height value at each
grid cell. The reason is to highly penalize cells with lethal
obstacles while not or slightly penalize the cells with no or
low obstacles. Additionally, inferred cells are given an extra
penalty. The reason to do it that way is to not encourage
the search towards the inferred region but instead towards
observed (known) regions.

For the RRT# it has been decided to only include observed
and inferred cells as search space. There is no reason to expand
the tree towards the no data region. But, in the future, if
the goal state lies within the no data region the search space
potentially can be expanded to include the no data region as
well. Another potential to limit the search space is to exclude
cells with high object height (> object height threshold).

Fig. 5. RRT# search space with start and goal states.

In Figure 5, the RRT# search space along with start and
goal states are shown. In the figure, white is observed (known)
region, grey is inferred region, and dark is no data region. The
white and grey cells are chosen to be the search space for the
RRT#.

In Figure 6, the RRT# tree expansion is shown. From the
figure, it can be observed that the RRT# optimal path mostly
stays along the observed (known) region.

Fig. 6. RRT# tree expansion.

Fig. 7. RRT# trajectory on the object height map.

The Figure 7 shows the sub-optimal RRT# trajectory on the
object height map.

RRT# is implemented in C++ and integrated into the the rest
of the project (python) via python boost wrapper. In terms of
performance:

Iterations Nodes Time [ms]
10,000 1200 400-800
20,000 2200 1000-1500
50,000 5500 3400-3800

The RRT# algorithm runs at a slower speed. As a future
work, RRT# can get faster incorporating parallel computing for
cost calculations between the sample and neighboring nodes
and saving some of the computed edge costs for a future re-
planning.

A. Iterative LQR

Quadratic cost functions are often considered for trajectory
optimization problems, as they enable the use of very cheap
and well-behaving solvers. LQR is a popular and powerful
feedback-based controller that we can easily implement on
our car. The iterative LQR or iLQR algorithm is an offline
trajectory optimization solver for trajectory tracking under
dynamics constraints only.



min
∆x1:N

∆u1:N−1

N−1∑
k=1

∆xk
TQ∆xk +∆uk

TR∆uk +∆xN
TQf∆xN

s.t. xref,k+1 +∆xk+1 = f(xref,k +∆xk, uref,k +∆uk)

Given a reference trajectory, it determines a feasible trajec-
tory with associated controls minimizing the given cost. From
the values xref,k,∆xk, uref,k,∆uk, the output trajectory and
controls are:

xk = xref,k +∆xk

uk = uref,k +∆uk

To solve this problem, we used the standard approach of
iteratively solving backward the state-value and action-value
functions to satisfying the Bellman principle of optimality.

First, the state-value function or cost-to-go is defined as the
cost associated to a given state assuming we follow an optimal
policy.

VN (x) = ∆xN
TQf∆xN (8)

Vk−1(x) = min
∆uk−1∈U

∆xk−1
TQ∆xk−1 +∆uk−1

TR∆uk−1 + Vk(x)

(9)

Second, the action-value function is the cost associated to
a given pair of state and action.

Sk−1(x, u) = ∆xk−1
TQ∆xk−1 +∆uk−1

TR∆uk−1 + Vk(x)

(10)

When the state is fixed, the controls are still free of choice
and we can select the ones that minimize this cost. Under this
choice, the action-value function is equal to the state-value
function.

iLQR is performing quadratic approximations of these two
functions, and gives as an end result the following policy for
the controls:

∆uk−1 = −dk−1 −Kk−1∆xk (11)

Where:

dk =
(
∇2

uk,uk
Sk

∣∣
x,u

)−1
(

∂Sk

∂uk

∣∣∣∣
x,u

)T

Kk =
(
∇2

uk,uk
Sk

∣∣
x,u

)−1 (
∇2

uk,xk
Sk

∣∣
x,u

)
These gradients and essians are obtained iteratively by

linearizing the discrete dynamics around the points xk, uk.
Several iterations of iLQR are needed to refine xk, uk because
of the approximations introduced above. The new values of
uk are determined by (11), and the new values of xk can

be determined by forward pass on the dynamics, using the
updated controls uk. For online control, LQR can use the
gain matrices Kk as the linear feedback policy for each step k.

For the initial values and the reference trajectory, we aug-
ment the result of RRT using rough approximations on the
controls, the yaw angles and the velocities. These are only
approximations, and this is why we preferred to choose Q,
R and Qf to give a higher penalty from deviating from the
reference 2D trajectory (px and py). These approximations are
the following:

vk = 4.5

ak = 0

ρk = tan−1

(
py,k+1 − py,k
px,k+1 − px,k

)
, k ≤ N

ρN = ρN−1

ρ−1 = ρ0

θk = (ρk−1 + ρk)/2

αk = θk+1 − θk

In order to help iLQR converge, we experimented two
upsampling methods. The first one is adding equidistant points
between every consecutive points in the path. This is a
straightforward upsampling method to implement, but has the
drawback to keep the same repartition of points in the path.

This repartition is characteristic of RRT/RRT# outputs for
this kind of terrains. However, it is penalizing iLQR when it
comes to finding a feasible path with equal time steps between
each output point. This heterogeneity results in great variations
on the velocities and accelerations, which prevents us from
closely fitting to the reference RRT path. To alleviate this
phenomenon, we used instead an umpsampling method that
produces a path with equidistant consecutive pairs of points.



1) Full iLQR: We first tried running iLQR to optimize the
entire path. This results in reasonable paths, but the consequent
horizon length deteriorates the resulting path.

2) iLQR by parts: Shortening the horizon over which iLQR
is requested to optimize helps it converge quickly and to more
desirable solutions as it makes the optimization problem easier
and the linearization of the dynamics more accurate on the tail
of the path.

This achieved a more desirable behavior.

The controls can then be used coupled with an LQR
controller to follow this trajectory.

B. MPPI control

MPPI is a sampling based control method that offers flexi-
bility and is able to optimize non-linear systems with complex
cost functions. MPPI was first introduced by Williams et al.
in [4], which allowed for real time optimization by taking
advantage of GPU acceleration. MPPI does not split planning
and execution into discrete steps, and instead calculates a tra-
jectory, performs a single control input, and uses the rest of the
unused trajectory to warm start the subsequent optimization
step.

Since the original work, further works have made improve-
ments or deviations to the base MPPI approach. We used the
pytorch-mppi library developed by the University of Michigan
Autonomous Robotic Manipulation Lab. This is a PyTorch
implementation of the version of MPPI introduced by Williams
et al. in [5] which extends the original MPPI control process
to not require control-affine dynamics. This is critical as it
allows for nonlinear approximate system dynamics (ie neural
networks) and a purely data driven approach to model learning
for deep reinforcement learning applications for MPC.

While our current work does not include a neural network,
we chose this method due to its implementation simplicity and
avenues for future work in deep reinforcement learning. We
used the same bicycle dynamics model described in Equation
2, the same cost function as used in our iLQR experiments,
and used an equidistant reference path as it provided the best
solution. We used a laptop with a Nvidia RTX 3080Ti to
parallelize and accelerate our sampling process.

We can see in Figure 8 that tracking performance is already
excellent at 500 samples, though there are some issues at the
start and end of the tracking sequence. Some of this may
be mitigated with a stronger termination penalty in our cost
function, and a better initial starting guess. We found that
increasing the nunmber of samples had little impact on the
overall trajectory, as even just 500 samples performed well
with our current configurations. Where the number of samples
made a large difference is the realism of the controls. We can
see in Figure 9 that the acceleration inputs throughout this
tracking sequence are quite unrealistic. Though the magnitude
is not very large, the inputs are quite jerky. This is because



Fig. 8. MPPI Tracking - 500 samples: Blue is the reference trajectory, orange
is the tracking trajectory.

Fig. 9. MPPI Acceleration - 500 samples

Fig. 10. MPPI Steering Angle - 500 samples

we did not place any additional constraints on the controls
to control for smoothness or feasibility. The inputs for the
steering angle are also very unrealistic with large swings from
one time step to the next (angles are measured in radians).

Fig. 11. MPPI Acceleration - 500k samples

Fig. 12. MPPI Steering Angle - 500k samples

By increasing the sample count to 500,000, we can see
in Figure 11 and Figure 12 that our controls are much
smoother. There are still extreme values at the beginning and
end, but the values and the overall shapes of the control
curves are far more realistic. This is without a significant
change to the trajectory, indicating that the small sample count
produces minor differences in the trajectory by consistently
overshooting and overcompensating, leading to the oscillatory
and jerky behavior seen in the 500 sample plots. By increasing
the sample count, a far greater range of controls are sampled,
allowing for more precise control, removing much of this
behavior.

IV. FUTURE WORK

A. RRT#
As a future work, we would like to achieve RRT# to run

around a real time at least at 10 Hz. In order to achieve a faster



compute, first, we would like to run cost calculations between
the sample node and its neighboring nodes in parallel. This can
be achieved using OMP or TBB libraries if it runs in CPU, or
we can try CUDA with a Nvidia GPU. Secondly, those cost
calculations can be saved in the memory to be re-used instead
of re-computed during RRT# re-planning.

Another improvement we would like to try is to include
vehicle dynamics into the node expansion. Currently, the RRT#
node expansion is based on a straight line which may greatly
limit performance of the RRT# if the cost map is more
complex. This can be achieved solving iLQR or DIRCOL
or any dynamically feasible MPC algorithm during the node
expansion where we could add dynamics and input constraints.

Lastly, in this project, we assumed the map is not changing
from the start state to the goal state. But, in fact, on an
autonomous vehicle, the map would be evolving as a new
measurement is received. As a result, it might necessitate
to recompute RRT# trajectory every time when the map is
updated. But, new expansion of the RRT# nodes might be
a time consuming. Thus, we might need to re-use previous
update cycle node expansion in the newly updated map and
run a fewer node expansion. This might be achieved with a
smarter data structure such as scrolling grid and storing the
nodes in the grid cells.

B. MPPI

For MPPI, one possible avenue of exploration is to extend
to more complex dynamics models. The bicycle model we
used is great for simple applications, but more robust models
may be required to adequately capture the dynamics of off-
road navigation. More complex 4-wheel models are a possible
solution, but another may be to use a neural network to
approximate the system dynamics. Depending on the quality
and quantity of our data reference, this may be a feasible
and interesting avenue for exploration. In particular, many
real world problems require real-time performance, limiting
possible neural network architectures to very simple models.
In traditional deep learning, it is common to train a large
model to stabilize and accelerate the learning process, and
then shrink the model using a combination of methods such as
quantization (low precision representations), pruning (remove
redundant neurons), or distillation (train a smaller network to
emulate a larger network). An interesting avenue of future
work would be to apply these compression techniques to train
a relatively large neural network to capture system dynamics,
then shrink the model to achieve the runtime performance
necessary without a noticeable drop in accuracy.

V. CODE LINK

All of the code for this project is con-
tained within the following GitHub repositories:
https://github.com/Antoine-Bergerault/OCRL-Project and
https://github.com/maulim0v/RRT Sharp ws/tree/main. The
MPPI implementation we used is from https://github.com/UM-
ARM-Lab/pytorch mppi.

REFERENCES

[1] O. Arslan and P. Tsiotras, “The Role of Vertex Consistency in Sampling-
based Algorithms for Optimal Motion Planning,” arXiv:1204.6453
[cs], Apr. 2012, Accessed: May 01, 2023. [Online]. Available:
https://arxiv.org/abs/1204.6453

[2] N. Hatch and B. Boots, “The Value of Planning for Infinite-Horizon
Model Predictive Control,” arXiv:2104.02863 [cs], Apr. 2021, Accessed:
May 01, 2023. [Online]. Available: https://arxiv.org/abs/2104.02863

[3] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
Odometry: IMU-centric LiDAR-Visual-Inertial Estimator for Challeng-
ing Environments,” arXiv:2104.14938 [cs], Aug. 2021, Accessed: May
01, 2023. [Online]. Available: https://arxiv.org/abs/2104.14938

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg and E. A.
Theodorou, ”Aggressive driving with model predictive path integral
control,” 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), Stockholm, Sweden, 2016, pp. 1433-1440, doi:
10.1109/ICRA.2016.7487277.

[5] G. Williams et al., ”Information theoretic MPC for model-based
reinforcement learning,” 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp. 1714-1721, doi:
10.1109/ICRA.2017.7989202.

https://github.com/Antoine-Bergerault/OCRL-Project
https://github.com/maulim0v/RRT_Sharp_ws/tree/main
https://github.com/UM-ARM-Lab/pytorch_mppi
https://github.com/UM-ARM-Lab/pytorch_mppi

	Introduction
	Problem description
	RRT planning
	Iterative LQR
	Full iLQR
	iLQR by parts

	MPPI control

	Future work
	RRT#
	MPPI

	Code Link
	References

